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Some guidelines for thermodynamic optimisation of phase diagrams
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Abstract

Thermodynamic optimisation of phase diagrams is a procedure that requires considerable experience and skill. The purpose of this
article is to furnish certain guidelines that might facilitate the work and improve the quality of the thermodynamic optimisation of phase
diagrams using the Calphad method. Some particulars regarding experimental data, Gibbs energy models, constraints on model
parameters, and performing the optimisation are discussed.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction 2. Experimental data

Phase diagrams can be calculated from Gibbs energy The first step of the thermodynamic optimisation of a
functions of phases [1]. The required Gibbs energy func- phase diagram is collecting and categorising experimental
tions (thermodynamic descriptions) are usually obtained by information. In principle any kind of experimental datum
a computer-assisted statistical procedure, using experimen- that is explicitly or implicitly linked to Gibbs energy can
tal thermochemical and constitutional data as input. There- be used as input for the optimisation. One typically looks
fore, it is correct to note that optimising phase diagrams for constitutional and thermochemical data. All constitu-
amounts to optimising of Gibbs energy functions. The tional and thermochemical data must be extracted as
generation and application of thermodynamic descriptions numbers, even if only a graph is reported. Crystallographic
constitute the central theme of the so-called ‘Calphad’ [2] information is also valuable, since it is useful in the Gibbs
(an acronym for CALculation of PHAse Diagrams by energy modelling. Although review articles serve as excel-
computer coupling of phase diagrams and thermochemis- lent sources of data, one should always consult the primary
try) method. In this method, each phase of the system sources.
under consideration is described using a Gibbs energy The second step involves the critical evaluation of the
model. The model parameters are estimated by the weight- collected data, which is essentially eliminating bad and
ed nonlinear least-square optimisation of thermochemical contradictory data. At this stage effort should be made to
and constitutional data. Fig. 1 is a flowchart of the Calphad identify and exclude unreliable data. Critical evaluation
method. There are computer programs available for per- requires considerable expertise and some familiarity with
forming the Calphad tasks, e.g. Thermo-Calc [3], Lukas different experimental techniques. It is important that one
program [4], ChemSage [5], etc. which have modules to must make a record of details such as technique used,
perform thermodynamic optimisation of phase diagrams. phases present, purity of the sample, experimental con-
In order to produce a good thermodynamic description of a ditions, quantity measured and its accuracy, etc. It is also
system using these programs, a great deal of expertise is useful to make graphical comparisons wherever possible.
required. The intention of this article is to provide some Frequently, difficulties faced during the least-square op-
guidelines that may help the user in producing good timisation are due to poorly evaluated experimental data,
quality thermodynamic descriptions. and may indicate that the input contains contradicting or

theoretically unacceptable data.
One of the main difficulties in the computerised thermo-

dynamic optimisation of phase diagrams is that start values
*Corresponding author. must be supplied for all model parameters that are opti-
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Fig. 1. Flowchart of the Calphad method.

mised. Usually a lot of time is spent in getting the start Therefore, it is more practical to begin the optimisation
values right, in the sense that the optimising program with a ‘minimal’ data set, comprising only a few vital
should be able to calculate a corresponding value for each experimental data. Including too many experimental data
experimental datum used. Implicit data, such as the phase in the beginning stage of the optimisation may prove
diagram data, are difficult to handle because their calcula- unwieldy. In the case of binary systems, for example, it is
tions involve solving nonlinear equations. If bad start enough to use data pretaining to three-phase equilibria and
values are used for the optimising variables, the nonlinear congruent transformations. Thermochemical information,
equations may not yield any solution. On the other hand such as enthalpy data and activity data, etc. may also be
the thermochemical data, for instance the enthalpy of included in the minimal data set. One may also use
mixing of the liquid, pose no such difficulty, since they can estimated (by extrapolation) or experimental metastable
be explicitly calculated from the Gibbs energy model. equilibrium data (Fig. 2), since it reduces the number of
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constitutional data deserve more weight than thermochemi-
cal data, particularly if the thermochemical data are not
established by several independent measurements.

For each experimental datum (dependent quantity) used
as input, there should be a corresponding equilibrium
condition specified in terms of appropriate state variables
(independent quantities). This should reflect the actual
experimental conditions as close as possible. Details such
as temperature, pressure, phases present, compositions, etc.
are usually known so that the equilibrium conditions can
be easily specified. The optimising program calculates the
dependent quantities at the specified equilibrium condition
using the current set of optimising variables. The optimis-
ing variables are continuously adjusted until the weighted
sum of squares of error is minimum.

The choice of dependent and independent quantities
Fig. 2. Al–Mg phase diagram: stable and metastable phase boundaries.

while defining an experiment is critical for the progress of
optimisation. It is illustrated in Fig. 3 for the case of binary

phases that are optimised together. However, one should phase boundary data [6]. The phase boundaries in a binary
exclude all such estimated phase diagram data in the final system can be measured either at a fixed composition or at
stage of the optimisation. a fixed temperature. In the former case, composition is the

Once a workable thermodynamic description is obtained independent quantity and temperature is measured: e.g.
using the minimal data set, more experimental data can be measurement of liquidus temperature by DTA of a sample
added. However, it is not recommended to use all the at fixed composition. Therefore, the equilibrium specifica-
critically evaluated experimental data in the optimisation, tion normally includes a condition on the composition. In
since this may prove difficult to handle. In fact, one always the latter case, phase composition is measured at a fixed
works with an ‘essential’ data set. Each experimental temperature: e.g. microprobe determination of composition
datum in the essential data set must be weighted carefully of a single grain annealed at a fixed temperature. Here,
according to its relative merits. Selection and weighting of equilibrium specification includes a condition on the
the data are very subjective. Dependability of the ex- temperature. The measurement at a fixed composition is
perimental method and agreement between independent most suitable for flat phase boundaries. In this case, if one
measurements of the same quantity should be taken into uses temperature as an equilibrium condition, it may give
account while selecting and weighting the data. Usually rise to a calculated composition that is far off from the

Fig. 3. Phase diagram showing regions where only composition can be reliably measured at a given temperature and vice versa.
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actual value. This is because a small fluctuation in the almost always be supplemented with thermochemical data.
temperature can result in a big change in the calculated On the other hand, small changes in model parameters
composition, thus causing the sum of squares of error to usually do not alter calculated phase boundaries in any
increase dramatically. Conversely, the measurement at a noticeable way.
fixed temperature is best suited for vertical phase It is generally preferred to have only quantities that are
boundaries. In this instance, setting composition as an actually measured as input for the optimisation. Values
equilibrium condition can cause abnormal increase in sum derived from measured quantities may not satisfy the
of squares of error. statistical requirements for the least-squares optimisation.

Each measured quantity must have an accuracy (stan- An optimisation software should be flexible enough to
dard deviation) associated with it, which may be reported accept the experimental quantity as input, rather than a
or estimated. Independent variables may also have a derived quantity. For example, to determine the activity of
specified accuracy. For example, temperature in an anneal- Zn (a ) in the Ag–Zn system, one can measure the EMFZn

ing treatment may be controlled within an accuracy of 65 (E) of the following galvanic cell:
K. Both these accuracies are significant for the optimi-

Zn ZnCl 1 (KCl 1 LiCl) (Ag–Zn)u u2 Eutecticsation, since they are used in the calculation of sum of
squares of error. The EMF of this cell is related to a by the relationZn

If required, data should be corrected for systematic
m 2 8m 5 RT ln a 5 2 zFE 5 2 2FE (1)Zn Zn Znerrors. Using too many data of one kind can make the

optimisation biased. In order to avoid this weights on such where z is the number of moles of electrons involved in
kind of data may be reduced. the cell reaction and F is the Faraday constant. Generally

When optimising systems with insufficient experimental one tends to use a rather than E, because the former isZn
information, one may utilise theoretically obtained values. the thermodynamic quantity that is usually reported and it
For example, the enthalpy of formation of transition metal is directly calculated by the optimising software. However,
compounds, estimated using Miedema’s method [7], is the quantity that is most suitable to be used in the
often used in place of missing data. Similarly, the molar optimisation is E, which is actually measured in the
heat capacity of a compound may be approximated using experiment. By rearranging Eq. (1), E can be expressed as
Kopp–Neumann rule as the weighted sum of the molar a function of a :Zn
heat capacities of its constituent elements. There are

RT ln aseveral thermochemical data estimation methods [8] that Zn
]]]E 5 2 (2)2Fare based on trends and regularities, which can be quite

handy. One can also infer great deal of information by Note that the activity of Ag (a ) may not be used in theAg
comparison with similar systems. For example, there are optimisation since it is calculated from a by Gibbs–Zn
many R–M (R5rare earth metal, M5a given element) Duhem integration.
systems which show striking regularities with respect to It may not be always possible to use the measured
their thermochemistry and phase diagrams [9], so that data quantities directly in the optimisation. This may be be-
of one system can shed light on another system. cause of a software limitation or due to a mathematical

Information available in higher-order systems may difficulty. For example, in the Knudsen cell–mass spec-
sometimes be used in improving data in lower-order trometric determination of activity coefficients (g ) ofi
systems. For example, in Ti–X systems there is generally components of a binary system A–B, one measures the ion
an experimental difficulty due to oxygen contamination of intensity (I ) ratio as a function of composition at a giveni
alloys. Therefore, constitutional data in the Ti-rich alloys temperature. The activity coefficients of both components
are often unreliable. It may be possible, however, to make are simultaneously obtained by the integration of the ion
a good estimate of phase boundaries in Ti–X systems by intensity ratios, using the scheme proposed by Neckel and
extrapolating phase boundaries from Ti–X–O systems. Wagner [10]:

The generation of Gibbs energy functions from constitu-
xBtional data can be thought of as the reverse of the I xB Axscalculation of a phase diagram using Gibbs energy func- ]]G 5 RT E ln dx 2 x C(T ) (3a)S D B B3 4I xA Btions. This might give us the impression that it is sufficient 0

to use constitutional data alone for generating Gibbs xs I x≠ G B Aenergy functions. Estimation of Gibbs energy functions ]] ]]5 RT ln 2 C(T ) (3b)S D F S D G≠x I xB A Bfrom phase diagram data is an ill-conditioned problem, and
therefore very sensitive to the accuracy of the constitution- where,
al data used. Experimental data are seldom accurate

1
enough to meet this criterion. Small changes in the I xB A

]]C(T ) 5E ln dx (3c)constitutional data can make large fluctuations in the S D BI xA Bmodel parameters. Therefore, constitutional data should 0
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In order to use the ion intensity ratio in an optimisation,
one must express it as a function of g . This involves thei

inversion of Eqs. (4a) and (4b), which contain integrals. It
xsis, therefore, more practical to use G rather than the ioni

xsintensity ratio. Note that G is a better choice as an inputi

compared to g , because the magnitude of the former isi

greater than the latter, hence easier to control in an
optimisation.

Sometimes it is possible to isolate erroneous phase
diagram data using simple thermodynamic reasonings [11].
For example, experimental slopes of phase boundaries
involving terminal phases in a binary system may be
checked for their agreement with the well-known van’t
Hoff equation [12]. The van’t Hoff equation for initial
slopes of phase boundaries is written as

b→a21 21 DH≠T ≠T A
] ] ]]]2 5 (5)S D S D 2≠x ≠xb / (a 1b ) (a 1b ) /a RTB B tr

b→awhere DH is the enthalpy of the b → a phase transitionA

of A and T is the corresponding temperature. This istr

illustrated in Fig. 4. If the phase boundaries violate the
van’t Hoff equation, it will not be possible to reproduce
them in a thermodynamic optimisation.

In some instances of optimisation it may be necessary to
consider experimental data from several higher-order
systems. This is particularly true in the case of terminal

Fig. 4. Initial slopes of phase boundaries in a binary system. phases that exist only in a narrow region in a binary
system. Although such phases can be described satisfac-

The excess partial molar Gibbs energies (or activity torily by more than one set of model parameters in the
coefficients) can be readily calculated as binary, not all sets are suitable in a higher-order system.

xs An example is the austenite phase (g) in the Fe–Ti system
≠ Gxs xs ]] (Fig. 5), which exists as the g-loop near the Fe-rich corner.G 5 RT ln g 5 G 2 x (4a)S DA A B ≠xB It dissolves very small amounts of C and N, for which very

xs accurate experimental data exist. This low solubility can≠ Gxs xs ]]G 5 RT ln g 5 G 1 (1 2 x ) (4b)S DB B B not be easily modelled by introducing ternary terms.≠xB

Fig. 5. Fe–Ti phase diagram.
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However, it is very sensitive to the binary g phase is recommended [17,18]. The sublattice model should
description. Therefore, it is best to optimise the description follow crystallographic sublattices, although simplifica-
of the binary g, treating data from Fe–Ti, C–Fe–Ti, and tions are often necessary to avoid too many end-members.
Fe–N–Ti together. Otherwise one may need to use very When selecting a sublattice model for a phase, due credit
large ternary interaction terms for the g phase. must be given to known crystallographic and solubility

range data for the phase, not only in the system under
consideration, but also in other systems (binary as well as

3. Gibbs energy models higher-order) where the same phase is observed [19].
Sometimes it is also necessary to consider information

Choice of the Gibbs energy model for a phase should be regarding other phases with related structures, as in the
such that it is physically sound and adequate for the case of phases related by order-disorder phase transitions
P 2 T 2 x domain in which the phase is stable. The model (e.g. the A2↔B2 transition in the Cu–Zn system). Crystal-
should have reasonable extrapolation characteristics in the lographic information is mainly used for deciding the
higher-order systems. Compatibility with existing models number of sublattices to be used and for assigning con-
is crucial, if the resulting thermodynamic description is to stituent species to each of them. An intermediate phase
be added to an existing database or it has to be combined usually has a preferred stoichiometry, called the ‘ideal’
with another description. stoichiometry, where each sublattice is occupied by only

In general physically sound models are more informa- one constituent species. But in reality some sublattices
tive and need less adjustable parameters to fit the ex- may have mixing of species. The mixing characteristics, in
perimental data. However, as physical soundness of the general, should commensurate with the data on the homo-
model increases computational difficulty increases. From geneity range and/or crystallographic information of the
Calphad point of view it is a good strategy to start the phase. By this approach one can ensure the general
optimisation using simple Gibbs energy models which applicability of the model.
have only few model parameters. Parameters of simple The main difficulty with the sublattice model is that the
models can easily be identified with the physicochemical number of end-members becomes too large (also the
characteristics of the phase, thus providing good insight number of model parameters) as the number of sublattices
into the physics and chemistry of the phase formation. For and constituents increases. It is often a problem to find
example, as a first approximation one may treat all suitable energy parameters for many of the fictitious end-
intermediate phases in a binary system as stoichiometric members, since they cannot be estimated in a meaningful
compounds. Once a satisfactory thermodynamic descrip- manner in an optimisation. Then one should look into the
tion is obtained, models may be changed to more appro- possibility of reducing the number of such energy parame-
priate ones. The parameter values obtained using simple ters. The number of sublattices may be reduced by
models can often be used as starting values for parameters grouping together sublattices with same point group sym-
of more elaborate models. metry and/or coordination number. In many cases reduc-

The sublattice model [13,14] is one of the most com- ing the number of parameters amounts to somehow
monly used Gibbs energy models. In the present form [15] relating them. In other instances it may be possible to fix
it is capable of treating many types of phases having the values of some parameters. For example, in the case of
arbitrary numbers of constituents and sublattices. When tetrahedral close-packed phases one can approximate the
applied to intermediate phases, it is usually referred as the Gibbs energy of an end-member to be equal to the
Compound Energy Formalism (CEF) [16]. The CEF is one weighted sum of the Gibbs energies of the constituents in
of the most important approaches to treat phases using the their fcc and bcc state. The fcc state is used for con-
sublattice model. The flexibility of the sublattice model stituents with coordination number 12, while the bcc state
makes it very suitable for computer calculations, whereas is used for higher coordination numbers [17].
the same flexibility introduces some problems. It may be If phases with the same crystal structure appear in more
possible that a solid-phase can be modelled satisfactorily than one region in the phase diagram, they should be
using more than one sublattice formulation. This leads to treated as one phase in the modelling, so that it has only
model incompatibilities, especially when one wants to one Gibbs energy description that is valid in all regions.
combine thermodynamic descriptions of systems where For example, the bcc phase appearing near the Fe-side and
different sublattice models are used for the same phase. Ti-side of the Fe–Ti system (Fig. 5) should be represented
For example, models used for the m phase in Co–Nb and by a single Gibbs energy description.
Nb–Ni should be the same, if they have to be combined in The thermodynamic description of a subsystem, which
the description of the Co–Nb–Ni system. Therefore, one is part of different higher-order systems, must be the same,
must be careful in defining the sublattice formulation for a if the higher-order systems are to be combined. For
phase, since the model should also be adequate to treat the example, the thermodynamic description of a quaternary
same kind of phase in other systems. For solid-phases, an system is based on four ternary systems. Each of the
approach based on crystal structure and homogeneity range ternary system requires description of three binary sys-
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tems. Since each binary system is common to two ternary In several metallic liquids it is observed that there is
systems, the description of a given binary should be the definite relation between the enthalpy of mixing (DH ) and

xssame in both the ternaries, failing which the ternaries can the excess entropy ( S). This lead many investigators to
xsnot be combined. Similarly, it is quite necessary to stick to formulate quantitative relation between DH and S. One

one common set of Gibbs energy descriptions for unaries, such recent formulation is Tanaka’s model [22] for predict-
xswhen different binaries, ternaries, etc. have to be combined ing ( S) from a knowledge of DH of binary liquid alloys.

to form a large database. This is particularly useful when dealing with a liquid phase
An intermediate phase having a narrow homogeneity for which there is a wealth of experimental information on

range may be modelled as a Wagner–Schottky phase DH, but no information on the component activities. For
[20,21]. It is illustrated for the case of the Laves phase (l) the simple case of a binary random solution phase, the
in the Fe–Ti system. This Laves phase has a C14 structure expression for molar Gibbs energy may be written as
and its ideal stoichiometry corresponds to Fe Ti. A two-2

G 5 O x 8G 1 RT O x ln xsublattice model, (Fe%,Ti) :(Fe,Ti%) , is generally used m i i i i2 1
i5A,B i5A,B

for describing this phase (‘%’ denotes the major con-
n

n nstituent of the sublattice). The Gibbs energy for one mole
1 x x O L (x 2 x ) (8)A B A,B A Bof formula unit of the Laves phase is given by n 50

l 1 2 l 2 l The temperature dependence of the Redlich–Kister co-G 5 y ( y 8G 1 y 8G )Fe Ti Fe:Ti Fe Fe:Fe nefficients L usually has the form:A,B1 2 l 2 l
1 y ( y 8G 1 y 8G )Ti Ti Ti:Ti Fe Ti:Fe

nL 5 a 1 b T1 1 1 1 A,B n n1 RT [2( y ln y 1 y ln y )Fe Fe Ti Ti

2 2 2 2
1 1( y ln y 1 y ln y )] It can be shown that for a liquid phase whose molarFe Fe Ti Ti

Gibbs energy is given by Eq. (8),1 1 2 l 2 l
1 y y ( y L 1 y L )Fe Ti Fe Fe,Ti:Fe Ti Fe,Ti:Ti

n
2 2 1 l 1 l

1 y y ( y L 1 y L )Fe Ti Fe Fe:Fe,Ti Ti Ti:Fe,Ti O aiHDH B n 501 1 2 2 l ] ]] ]]U 5 5 2 5 k (9)xs xs U n1 y y y y L (6) x →0Fe Ti Fe Ti Fe,Ti:Fe,Ti S B S x →0B B O bis
n 50where y is the site fraction of the constituent species i oni

lsublattice s, G is the Gibbs energy per mole of formulaI(0) The value of k is given by Tanaka’s model. Sometimes it
lunit of the end member compound I(0), and L is theI(z) is possible to extend this kind of constraint to the solid-

interaction energy term representing the interaction be- phases [23]. For an intermediate phase with no information
tween constituent species within each sublattice of the on its Gibbs energy of formation, one may assume that at
constituent array I(z). Since Ti and Fe are present only in its stable or metastable congruent melting point, the ratio
small amounts (as defects) in the first and second sublat- of its enthalpy and entropy of formation has the same
tices, respectively, the Laves phase may be considered as a value as the ratio of the enthalpy of mixing and excess
Wagner–Schottky phase. In such a case the following entropy of mixing of the liquid phase at the same tempera-
relation among the G parameters of Eq. (6) exists: ture [24].

Sometimes, the nature of the phase diagram itselfl l l l
8G 5 8G 1 8G 2 8G (7)Ti:Fe Fe:Fe Ti:Ti Fe:Ti necessitates the use of constraining relations of model

parameters. For example, phases exhibiting miscibilityNote that this approach eliminates the need to optimise the
l gaps are difficult to handle in an optimisation. In order toparameter 8G , which is otherwise not possible toTi:Fe

have better control of the description of the miscibility gap,obtain in a meaningful manner. Phases having relatively
constraints may be introduced on the model parameters.large homogeneity range, such as the s phase in Fe–V
For example, in a binary system A–B, the constraintsystem, must not be treated as Wagner–Schottky phase.

2 3
≠ G ≠ Gm m
]] ]]f(T ) 5 5 5 0 (10)U US D S D2 3

Cr. Cr.≠x ≠xx 5x x 5xB B B B B B4. Constraints on model parameters

guarantees a specific critical temperature (T ) for a givenCr.
Cr.In certain instances some model parameters are inter- critical composition (x ) of the miscibility gap. At theB

Cr.dependent because of the physicochemical character of the 1
]critical point, where T 5 T and x 5 x 5 (symmetricCr. B B 2phase, so that there may be one or more constraining with respect to composition, which is of the most common

relations among them. This effectively reduces the number occurrence), and noting that x 1 x 5 1, we can transformA B
of independent model parameters. One such constraint (Eq. Eq. (10) into an appropriate constraint:
(7)) was already given in the previous section. Here we

0 2 1 32RT 2 L 1 L 5 L 2 Lshall discuss some more cases. Cr. A,B A,B A,B A,B
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a 0 g 0so that G (P ,T ,x ) 2 G (P ,T ,x ) 5 0 (14b)m 0 0 B m 0 0 B

a 1 6(a 2 a ) 2 a0 1 3 2 At a pressure P and a temperature T , Eq. (14b) may be]]]]]]]]T 5 (11) 0 0Cr. 02R 2 (b 1 6(b 2 b ) 2 b )0 1 3 2 solved to obtain the composition x . When the two-phaseB

region is narrow, it is reasonable to assume that theNote that the critical point of a symmetric miscibility gap
n allotropic phase boundary bisects the tie-lines in andoes not depend on L parameters for which n . 3. ForA,B

isobaric T 2 x phase diagram. Therefore, at T the com-0an asymmetric miscibility gap, one can again utilise Eq.
0position x is given byB(11) to derive constraints among the model parameters.

For example, when n 52, we have [25],
a gx 1 xB B0

Cr. Cr. ]]]x 5B6x (1 2 x ) 2 1 2B B0 ]]]]]L 5 RTA,B Cr. Cr. 2 Cr.4[x (1 2 x )]B B Hence, by knowing the Gibbs energy function of one of
2 Cr. Cr.

2 L [24x (1 2 x ) 2 7] (12a) the phases and few tie-lines at different temperatures, weA,B B B

can estimate the Gibbs energy of the other phase as a
RTCr.1 Cr. 2 function of temperature and composition. The estimated]]]]]L 5 (1 2 2x ) 2 4 L (12b)A,B B F Cr. Cr. 2 A,BG12[x (1 2 x )] Gibbs energy values may be used as input for theB B

optimisation, especially when there are no experimental
In the sublattice modelling of intermediate phases with

thermochemical data available. An example where this
homogeneity range, it may be possible that two ‘end

approach could be useful is in the optimisation of the
members’ have very close compositions. It is then quite

g-loop (Fig. 6) in many Fe binaries (e.g. Fe–Ti, Fe–V,
reasonable to assume that their Gibbs energies are approxi-

Fe–W, etc.), where there is a wealth of thermochemical
mately the same [26]. An example is provided by the m

data available for the a phase and not enough data for the
phase, for which the sublattice model is

g phase.
In some cases the model requires that, due to the(A%,B) :(B) :(A,B%) :(A)1 4 2 6

crystallographic symmetry of the phase, several model
The end members of this model are: A B , A B , A B , parameters be related. This is illustrated in the modelling9 4 8 5 7 6

and A B . Since most of the m phases occur around either of B2 phase (CsCl structure). In the sublattice formalism,6 7

A B or A B stoichiometry, the ideal stoichiometry could one mole of B2 phase in the binary system A–B is denoted7 6 6 7

be either of these. Since these two stoichiometries are very by
close to each other, it is advantageous to constrain their
Gibbs energies to be approximately the same. The same (A%,B) :(A,B%)1 / 2 1 / 2
argument may be extended in approximating Gibbs ener-
gies of two compounds with nearly the same stoich- The molar Gibbs energy of the phase is given by
iometries.

Generally speaking entropy and enthalpy should have
the same sign, unless there is a special reason for the
contrary. For example, in the case of a stoichiometric
compound A B whose Gibbs energy function is given byp q

A Bp q8G 2 p8G 2 q8GA B
]]]]]]] 5 a 1 bT (13)

( p 1 q)

where the coefficients a and b usually have opposite signs.
Any deviation from this requires a close scrutiny.

When dealing with narrow two-phase regions of solution
phases, the concept of allotropic phase boundary (T -line)0

is useful in approximating the Gibbs energy of one of the
two phases from a knowledge of the Gibbs energy of the
other. Along the allotropic phase boundary, which lie in
the two-phase region, the Gibbs energies of both the
phases are equal, i.e.

a gG (P,T,x ) 2 G (P,T,x )u 5 0 (14a)0m i m i P5P ,T5T ,x 5x0 0 i i51to(c21)

For the binary system A–B the allotropic phase boundary
Fig. 6. g-loop in the Fe–Ti system and the corresponding T -line.is defined by, 0
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B2 1 2 B2 2 B2G 5 y ( y 8G 1 y 8G ) feasible description of the liquid and the terminal phases isA B A:B A A:A

obtained, the description of the intermediate phases may be1 2 B2 2 B2
1 y ( y 8G 1 y 8G )B B B:B A B:A optimised by keeping the optimising variables for other

1 phases fixed. One could speed up the procedure by1 1 1 1]F1 RT ( y ln y 1 y ln y )A A B B2 excluding irrelevant experimental data from the optimi-
sation. This may be done by setting the weights on such1 2 2 2 2] G1 ( y ln y 1 y ln y )A A B B data to zero. For example, while optimising the parameters2

n for fcc phase, one may exclude the data concerning the
1 1 2 n B2 1 1 n

1 y y y O L ( y 2 y )S equilibrium involving bcc, hcp, and liquid. In this respectA B A A,B:A A B
n 50 it is handy to have labels or numbers for each experimental

n n

2 n B2 1 1 datum in the essential data set and a table with names of
1 y O L ( y 2 y )DB A,B:B A B phases against the data numbers or labels where the phasen 50

n is present. Of course, in the final run of the optimisation all
2 2 1 n B2 2 2 n

1 y y y O L ( y 2 y )S the data are considered together with all the parametersA B A A:A,B A B
n 50 that are being optimised.

n n

One of the objectives in the optimisation should be to1 n B2 2 2
1 y O L ( y 2 y )DB B:A,B A B obtain a description with fewer number of model parame-n 50

1 1 2 2 B2 ters, yet with a lower sum of squares of error. For example,
1 y y y y L (15)A B A B A,B:A,B in modelling simple binary metallic solution phases one

rarely needs a Redlich–Kister polynomial [27] of degreeSince sublattices ‘1’ and ‘2’ are indistinguishable because
more than two. Exceptions are phases exhibiting anof the crystallographic symmetry, the following constraints
enthalpy of mixing that has an extremum displaced fromon the model parameters must be met.
the equiatomic composition or a miscibility gap close toB2 B2

8G 5 8GA:B B:A the edge of the phase diagram. To model such phases one
usually needs higher-order polynomials. It is not rec-

n B2 n B2L 5 LA,B:A A:A,B ommended to simply increase the number of model
parameters, in order to get a description that represents all

n B2 n B2L 5 L the data as close as possible.A,B:B B:A,B

With more model parameters the sum of squares of error
usually decreases, but at the same time the parameters may

5. Performing the optimisation become large in magnitude and opposing in sign. This
usually has a adverse effect on the extrapolation charac-

Success of an optimisation depends on: teristics of the model. Such parameters may either be
excluded from the description or given a fixed value. A

1. the selected models well determined parameter is unlikely to have extremely
2. the selected experimental data large or small magnitude, when expressed for one mole of
3. the number of model parameters atoms.
4. what parameters can be meaningfully optimised using It is meaningless to optimise certain parameters when

the selected experimental data there is no suitable thermochemical data that contribute to
5. starting values for model parameters, and its significance. The relative standard deviation of a
6. the order in which parameters are optimised. parameter can be taken as a measure of its significance. A

large relative standard deviation means the parameter is
badly determined and therefore should not be included inThe optimisation software like PARROT (a module of
the optimisation. For example, including a T ln T parame-the Thermo-Calc data bank system) and the Lukas program

xster in the description of G of a solution phase makes nohave the facility to generate start values for the model
sense, unless there is enough data to support the Tparameters. If such built-in procedure fails, then one

xsdependence of DH or S. Thus it is important to check theshould resort to heuristic methods. Sometimes it may be
magnitudes and standard deviations of the optimisingpossible to use model parameters obtained for a similar
variables frequently during the optimisation. In somesystem as start values for the optimisation.
instances constraints such as Eq. (7) on badly determinedThermodynamic optimisation is a stepwise procedure. It
parameters may be used.is a good strategy to exclude all intermediate phases during

It is quite unnecessary to report too many significantthe initial stages of the optimisation. In other words, one
digits for the model parameters, since the effect of trailingstarts the optimisation with just the liquid and the terminal
digits on Gibbs energy is generally insignificant [28]. Thephases. Since intermediate phases are not present during
model parameters may be rounded off during the optimi-this stage of the optimisation, one may have to use
sation. One usually starts with rounding off the parameterextrapolated metastable equilibrium data (Fig. 2). When a



198 K.C. Hari Kumar, P. Wollants / Journal of Alloys and Compounds 320 (2001) 189 –198

with the highest relative standard deviation. The optimi- 6. Conclusions
sation is rerun while keeping the value of the rounded off
parameter fixed. The rounding off should be done in such a We have presented some guidelines that may help a
way that there is no significant increase in the sum of novice user of computer programs for optimising phase
squares of error. The procedure is continued until all diagrams using the Calphad method. These guidelines are
parameters except one are rounded off. rather general, and one should realise that there are always

During the course of the optimisation one may find that specific difficulties associated with a particular system.
that certain experimental data are difficult to fit. Such data Nevertheless, the authors feel that these hints are useful for
are most likely to be erroneous and should be subjected to a beginner.
close scrutiny.

Calculating the phase diagram at different stages of the
optimisation and comparing it with the experimental data
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